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Abstract
We study electronic phase transitions in the half-filled ionic Hubbard model with an on-site
Coulomb repulsion U and an ionic energy � by using the coherent potential approximation.
For a fixed and finite � two transitions from the band insulator via a metallic state to a Mott
insulator are found with increasing U . The values of the critical correlation-driven
metal–insulator transitions Uc1(�) and Uc2(�) are estimated. Our results are in reasonable
agreement with the ones obtained by single-site dynamical mean-field theory and determinant
quantum Monte Carlo simulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ionic Hubbard model (IHM) was originally proposed
to study the neutral–ionic transition in organic charge-
transfer salts [1] or the ferroelectric transition in perovskite
materials [2]. This model includes an on-site Coulomb
repulsion (U) and a staggered potential that takes alternating
values (±�) on neighboring sites of a bipartite lattice. At half-
filling, the ground state of the IHM is a band insulator (BI) for
� � U and a Mott insulator (MI) for U � �. It is natural to
ask whether an intermediate phase can be found between the
BI and MI phases. To answer this question, the IHM has been
intensively studied both in low dimensions and in the limit of
infinite dimension by a variety of techniques.

In one-dimensional (1D) IHM, many of the studies suggest
that the direct transition from the BI to the MI is replaced by
an intervening insulating bond-ordered phase [3–7]. The phase
diagram of the IHM in 2D and at higher dimensions, however,
is highly disputed. For 2D, the cluster dynamical mean-field
theory (DMFT) [8] suggests a bond-ordered phase separating
BI and MI regimes, while the determinant quantum Monte
Carlo (DQMC) method [9] gives a metallic phase. At higher
dimensions, on including antiferromagnetic long-range order,
the Hartree–Fock theory [10] and the single-site DMFT [11]
show that the system is insulating for all interaction strengths.
On the other hand, within the single-site DMFT Garg et al [12]
and Craco et al [13] have found that, if antiferromagnetism
is suppressed due to frustration, then the intermediate phase

between BI and MI is metallic, but it is unclear whether this
metallic region shrinks to a line or if it ends up at a particular
point by increasing the potential �. In addition, the nature of
the phase transition between the metallic and the MI phases
as well as between the BI and MI phases is still under debate.
Generally, at present it is not clear which of the findings are
due to the approximation used and which ones are independent
of it.

The purpose of this paper is to study electronic
phase transitions in the IHM at half-filling in two and
three dimensions using the coherent potential approximation
(CPA). This self-consistent approximation is known to be
very successful in explaining single-particle properties of
disordered systems and is well suited to study the Mott–
Hubbard metal–insulator transition in the usual Hubbard
model [14]. The CPA was also applied to intermediate-valence
and heavy-fermion systems [15] as well as to study charge
ordering in the extended Hubbard model [16].

2. Model and formalism

We consider the following Hamiltonian for the IHM on a
bipartite lattice (sublattices A and B):

H = −t
∑

i∈A, j∈B,σ

[c†
iσ c jσ + H.c.] + U

∑

i

ni↑ni↓ + εA

∑

i∈A

ni

+ εB

∑

i∈B

ni − μ
∑

i

ni , (1)
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where ciσ (c†
iσ ) annihilates (creates) an electron with spin σ at

site i , niσ = c†
iσ ciσ and ni = ni↑ + ni↓. t is the nearest-

neighbor hopping parameter, U the on-site Coulomb repulsion,
and εA = � and εB = −� the ionic energies. The chemical
potential is chosen to be μ = U/2, so that the average
occupancy is 1 (half-filling).

In the alloy-analog approach the many-body Hamilto-
nian (1) is replaced by a one-particle Hamiltonian with disorder
which is of the form

H =
∑

i∈A,σ

EAσ niσ +
∑

i∈B,σ

EBσ niσ − t
∑

i∈A, j∈B,σ

[c†
iσ c jσ+H.c.],

(2)
where

Eα,σ =
{

εα − U/2 with probability 1 − nα,−σ ,

εα + U/2 with probability nα,−σ .
(3)

Here α = A, B and nα,σ is the average occupation with spin
σ in the α-sublattice. As in [12, 13] we focus in this paper
on the paramagnetic case, for which nα↑ = nα↓ = nα/2.
The Green function corresponding to the Hamiltonian (2)
has to be averaged over all possible configurations of the
random potential which can be considered to be due to alloy
constituents. The averaging cannot be performed exactly.
To solve the alloy problem the CPA is used. In such an
approximation the averaged local Green function for the α-
sublattice Gα(ω) takes the form [16]

Gα(ω) = 2

W 2

{
ω − �ᾱ −

[
(ω − �ᾱ)

2 − ω − �ᾱ

ω − �α

W 2

]1/2
}

,

(4)
with α = A(B) and ᾱ = B(A), where �α ≡ �α(ω) is the self-
energy for the α-sublattice. Here we have employed the semi-
elliptic density of states (DOS) for non-interacting electrons,
ρ0(ω) = 2

πW 2

√
W 2 − ω2, W is the half-width of the band,

which sets the energy unit. Note that this model DOS is often
used as an additional approximation in combination with the
CPA. As was noted in [17], for the Bethe lattice of connectivity
z � 3 this approximation is good, at least in a qualitative
sense. Therefore, it is reasonable to believe our calculation
is applicable to the IHM in dimensions D � 2. The CPA
demands that the scattering matrix vanishes on average. This
yields an expression for �α(ω) of the form

�α = Ēα − (εα − U/2 − �α)Gα(ω)(εα + U/2 − �α), (5)

where Ēα = εα + U(nα − 1)/2. Eliminating �α(ω) from (4)
and (5) leads to a pair of equations for GA(ω) and GB(ω):
1
16 G2

ᾱ(ω)Gα(ω) − 1
2 (εα − ω)G ᾱ(ω)Gα(ω)

+
[
(εα − ω)2 − U 2

4

]
Gα(ω) − 1

4
G ᾱ(ω)

+ εα − ω − U

2
(nα − 1) = 0. (6)

Equation (6) must now be solved with nA + nB = 2, where
nα = −2/π

∫ 0
−∞ Im Gα(ω) dω. From the self-consistent

CPA solution of the IHM one can determine the local one-
particle DOS ρα(ω) = − Im Gα(ω)/π , the staggered charge

Figure 1. Total and local DOS for B-sublattice for � = 0.1 and
different values of U . DOS exhibits gaps for U = 0.1 (a) and 1.45
(c), corresponding to band and Mott insulating states, respectively.
Energy scale: W = 1. (a) Band insulator; (b) metal and (c) Mott
insulator.

density nB − nA and the charge gap as functions of the model
parameters U and �. A metal is distinguished from an
insulator by a finite total DOS at the Fermi level, i.e. ρ(0) =∑

α ρα(0) > 0.

3. Results and discussion

Before numerically solving equation (6), let us briefly consider
limiting cases. In the absence of a staggered potential, setting
� = 0 in (6) we reproduce the CPA equation for the Green
function obtained by Velicky et al in the usual Hubbard
model [18]. The critical Coulomb repulsion for the Mott–
Hubbard metal–insulator is found to be Uc = W = 1. In
the non-interacting (U = 0) limit within the CPA the system
is a band insulator with the exact charge gap 2�.

We turn now to present our numerical results. Figure 1
shows the total and local DOS for the B-sublattice for � = 0.1
and for three values of U corresponding to the three different
phases. The solid and the dotted lines correspond to the total
and the local DOS, respectively. For U = 0.1 and 1.45,
corresponding to the BI and MI phases, the DOS shows a gap
around ω = 0, indicating an insulator. Additionally, at small
U the gap is small, of the order of �; at large U in addition
to the gap around ω = 0 we also found two small gaps around
ω ≈ ±0.85. The latter reflects a band splitting due to alloy
disorder, as was noted in [19, 20]. In contrast, the DOS at the
Fermi level for U = 0.85 is nonzero, which indicates a metallic
phase. Here, as in [13, 19], the imaginary part of �α(ω) (not
shown) is finite at the Fermi level. Similar behaviors of the
DOS were also found in the DMFT and DQMC studies of this
system [9, 11–13].

The power of the CPA lies in its simplicity. Since
ρA(ω) = ρB(−ω) is valid at half-filling, it follows that
ρA(0) = ρB(0). Then from equation (6) it can be verified that
for fixed � the necessary conditions for ρ(0) 
= 0, i.e. the
system is metallic, are 2� < U(�) <

√
4�2 + 1. In

other words, within the CPA the metallic phase of the system
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Figure 2. The T = 0 phase diagram of the IHM obtained by the CPA
in combination with the semi-elliptical model DOS. The upper phase
boundary Uc2(�) approximately equals

√
4�2 + 1, whereas for

� � 0.5 the lower one is almost identical to the strong coupling
boundary line U = 2�.

is sandwiched between Uc1(�) and Uc2(�), where 2� <

Uc1(�) < Uc2(�) <
√

4�2 + 1. Consequently, the metallic
region becomes vanishing small for � � 1 and approaches
the strong coupling boundary line U = 2� when � → ∞. It
means that the CPA nicely reproduces the phase diagram in the
atomic limit (t = 0). In figure 2 we present the obtained phase
diagram for the half-filling IHM. It is interesting to compare
our phase diagram with the ones derived by DQMC and DMFT
of the IHM in two and higher dimensions. In agreement with
the single-site DMFT results [12, 13] we find the metallic
phase along the � = 0 axis, and as the cluster DMFT [8] and
the DQMC [9] our intermediate phase is located slightly above
the line U = 2�. The shape of our metallic region is similar to
the ones obtained in [13], which are considerably enlarged in
comparison with those in [12], keeping in mind that in [12, 13]
2t = W . However, the CPA does not allow us to determine
the coexistence region between metal and MI or between BI
and MI as in [13]. Additionally, our results support the view
that the metallic phase shrinks to a line by increasing the ionic
energy �. The charge gap as a function of U for three values
of � is plotted in figure 3. For U < Uc1(�) our results are
compatible with those obtained in [13] and we find the system
is a band insulator with a gap of the order of (2�−U). The gap
is suppressed to zero at U = Uc1(�) and remains zero within
the metallic phase when Uc1(�) � U � Uc2(�). For U =
Uc2(�) there is a second transition from the metal to a Mott
insulator, in which the gap is of the order of (U − √

4�2 + 1).
In figure 4 we show the CPA result for the staggered charge
density nB − nA as a function of U for different values of �.
For fixed � the charge density decreases with increasing U and
approaches zero for large U . Our results for � = 0.5 and 1.0
are in good agreement with those obtained within single-site
DMFT in [11], keeping in mind that in [11] the bandwidth sets
the energy unit. As in DQMC work [9], in the CPA the phase
transitions are clearly continuous, in contrast to the results
in [8, 13], where DMFT studies give a first-order transition
between the intermediate phase and the Mott insulator.

Figure 3. Charge gap of the IHM as a function of U for different
values of �.

Figure 4. Staggered charge density nB − nA as a function of U for
different values of �. Our results for � = 0.5 and 1.0 are in good
agreement with those obtained within single-site DMFT in [11]. In
the CPA the phase transitions are clearly continuous.

4. Conclusions

We have applied the CPA to study electronic phase transitions
in the half-filled IHM in dimensions D � 2. We derive the U–
� phase diagram which well recovers the limiting cases and is
in reasonable agreement with the ones obtained by single-site
DMFT and DQMC simulation. We find also continuous phase
transitions between the metallic and insulating phases.

As in the DMFT, in the limit D → ∞ the CPA
yields exact results for one-particle properties. In studying
the electronic boundary phase in the IHM the CPA has
advantages over the DMFT and DQMC of being analytically
simple. It provides some analytical results and does not
require much computer work. Although the CPA is unable
to capture nonlocal correlations and is more accurate at high
temperatures, comparing our results with the ones obtained by
DMFT and DQMC methods, we believe that the CPA can still
catch the essential physics of the system in the paramagnetic
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sector at low temperatures, and therefore it gives a correct
qualitative picture of the metal–insulator transitions in the
IHM. Based on the CPA results as well as the ones obtained
by single-site DMFT and DQMC in previous studies we may
speculate that the presence of a metallic phase intervening
between the band and Mott insulating phases in the half-filled
IHM at high dimensions is not an issue of the approximation,
but a real feature of the system. We expect that, in the near
future, by using optical lattices the physics of the IHM can be
realized in experimental practice.

The calculations presented here can be extended to the
IHM away from half-filling and/or at finite temperature. Within
the CPA one can also evaluate the temperature dependence of
the conductivity for a wide range of model parameters and
then calculate the electronic phase diagram of the system.
However, to obtain the precise nature of the transitions and the
intervening phases further investigations by more sophisticated
methods are required. This is left to future work.
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